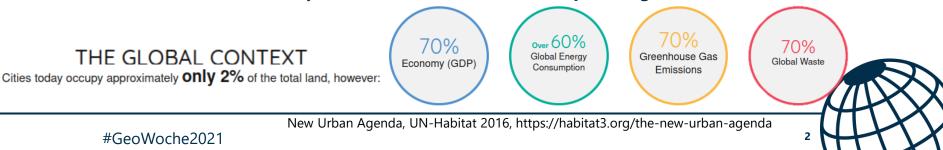


Building type based estimation of relevant parameters for urban infrastructure planning using VHR satellite imagery and UAV data

Gebhard Warth, Andreas Braun, Oliver Assmann, Kevin Fleckenstein, Volker Hochschild

08.10.2021


Background & Relevance

Urbanization

- Global phenomenon of migration from rural to urban environments
- Global turning point in 2007
- Regional differences, highest urbanization rates in SE-Asia and Africa

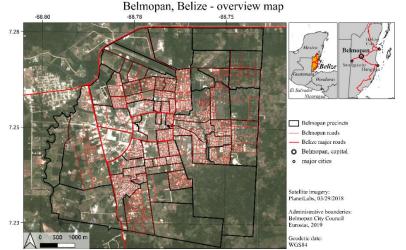
Challenges for urban infrastructure planning

- Urban infrastructure planning is key for slum reduction
- Goal: increase sustainability through integrated planning approaches
- UN General Secretary Gutierres: "Towards evidence planning"

Hypothesis:

Residential building type can provide relevant knowledge for urban infrastructure planning

- Socio-economic information as proxy for residential water & energy consumption and solid waste & waste water production
- Electricity consumption



Study city: Belmopan

Planned capital city of Belize

- Relocation of the city due to repeated hurricane destructions
- Inauguration: 1970
- First elected city administration: 2000
- Inhabitants: 25,583 (est. 2021)
- Population growth 2014 2018: 6.4% p.a.

4

Deutsche Gesellschaft für Geographie | DGfG

Data for the studies

VHR satellite imagery

- Two WorldView-1 stereo pairs (2018/03)
- PlanetLabs (2019/03)

UAV imagery

- 6 study areas in Belmopan
 - 15 UAV flight campaigns
 - 2,800 single images

Household surveys

- 2019/01-03: 405 interviews on socio-economy
- 2019/11-12: 190 interviews on electricity consumption

Building Type 13

Single Family Advanced

Methods Building detection

- Manual footprint detection
- Prioritization of time efficiency over scientific excellency

Random forest building type classification

- Classification attributes: geometric attr., building height, guality of life indicators
- Residential building types: 4 single family building type classes, 4 multi-family • building type classes

Photgrammetry and structure-from-Motion UAV data processir

- Orthomosaic generation
- DSM/nDSM generation (building height, roof complexity, PV analysis) ٠

Statistical analysis of household data Pattern detection in relation to building type for:

- Socio-economic indicators
- Residential electricity consumption •

Building Type 11

Single Family Basic

Building Type 12

Single Family Standard

Building Type 14

Single Family Complex

Building Type 23 Multi-Family Apartment

Building Type 24 Multi-Family Modern

Warth et al. 2020

Building Type 21 Multi-Family Basic

Building Type 22

Multi-Family Standard

7

Results – building type classification:

WV-1 data classification

- Full coverage of Belmopan: 6,627 buildings
- Initial RF classification: OA 56.7%
- Threshold based classification refinement: OA 86.3%

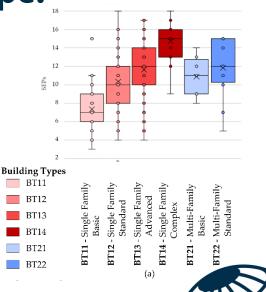
Building Type	Share of total number			
BT 11 – Single Family Basic	11.5%			
BT 12—Single Family Standard	46.2%			
BT 13—Single Family Advanced	18.3%			
BT 14—Single Family Complex	8.6%			
BT 21—Multi-Family Basic	0.5%			
BT 22—Multi-Family Standard	2.0%			
BT 23—Multi-Family Apartment	1.4%			
BT 24—Multi-Family Modern Apartment	<0.1%			

UAV data classification

- Partial coverage of Belmopan: 1,619 buildings (24.4% of building stock)
- Increased accuracy from added roof complexity information
- RF classification accuracy:

OA 73 %

#GeoWoche2021


Results – prediction of socio-economic information based on building type:

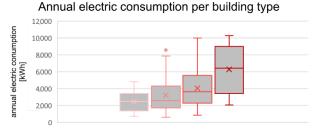
Determination of socio-economic measure for households as 15-point scale:

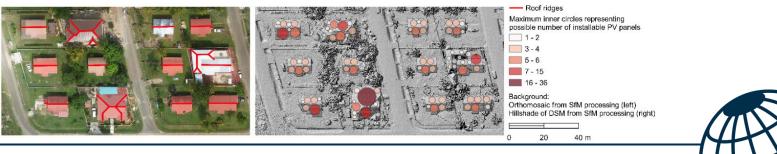
- Household assets
- Monthly household expenses
- Highest educational degree of the main earner

Result: Distinctive socio-economic characteristics for building types

Refined building types for Belmopan Single Family Basic			2	e em	-			 	4
💹 Single Family Standard (close) 🛛 🖉						1.0 A.B.	1 P. 1	A REAL PROPERTY AND INC.	2
Single Family Standard (far)				🐼 🗒»					Building Type
💹 Single Family Advanced (close)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			100					
Single Family Advanced (far)					· ·	A		· · ·	BT11
Single Family Complex				🚥 🏠		-1 .	1 M	-	BT12
Multi Family Basic	8 00							. 🗧 📲 🔢	
Multi Family Standard (dense)									BT13
🛄 Multi Family Standard (open)			20	°8 🕋		1.0			BT14
Multi Family Apartment				•		-	100		D114
Multi Family Modern Apt		8		E 📰					BT21
Public				<i></i>					
SEC assignment for Belmopan									BT22
I [2201]				-					
II [457]					F .				· · ·
III [1751]			000	5					
IV [892]	50 10) m "				50 100	m "		M_{arth} at al 2020
V [566]		8		-			1		Warth et al. 2020

#GeoWoche2021




Results – estimation of electricity consumption and PV energy balancing (1/2):

- Statistics: Distinctive electricity consumption patterns
- PV energy balancing:
 - Determination of roof-based PV suitability (DSM)
 - Solar radiation model: NSRDB
 - Realistic scenario: 2 PV panels per building
 - Ideal scenario: best roof fully equipped with PV

📕 BT 11 🔲 BT 12 🔲 BT 13 🔲 BT 14

Building type

NSRDB: National solar radiation data base

Warth et al. 2021

9

Building Type 12 Building Type 13 Single Family Standard Single Family Advanced

Building Type 11

Single Family Basic

Building Type 24

Multi-Family Modern

Results – estimation of electricity Building Type 21 Building Type 22 **Building Type 23** Multi-Family Basic Multi-Family Apartment Multi-Family Standard consumption and PV energy balancing (2/2):

Main findings:

- Belmopan can cover substantial parts of energy demand through PV
- Approach enables data provision for socially fair energy strategies ٠ Scenario 1: maximum number of PV Scenario 2: maximum two PV panels on

	panels on	best FOR	best FOR			
	PV balance [kWh/year]	PV energy coverage [%]	PV balance [kWh/year]	PV energy coverage [%]		
Total	1,847 (+/- 4,049)	148% (+/- 108)	-2,607 (+/- 903)	29.5 % (+/- 6.5)		
BT 11	-337 (+/- 1,930)	86% (+/- 78)	-1,573 (+/- 227)	36.0% (+/- 9.9)		
BT 12	1,318 (+/- 3,420)	141% (+/- 106)	-2,191 (+/- 118)	32.0% (+/- 3.7)		
BT 13	3,489 (+/- 4,443)	186% (+/- 110)	-2,971 (+/- 74)	26.5% (+/- 1.8)		
BT 14	1,670 (+/- 5,528)	127% (+/- 88)	-5,203 (+/- 63)	17.1% (+/- 1.0)		
BT 21	3,189 (+/- 2,625)	202% (+/- 84)	-2,120 (+/- 104)	32.1% (+/- 3.3)		
BT 22	925 (+/- 2,779)	122% (+/- 65)	-3,230 (+/- 87)	24.1% (+/- 2.0)		
	· · · · ·		. ()			

Scenario 2: Two PV panels energy share of annual household energy consumption

7% - 20% [177]
21% - 30% [622]
31% - 40% [691]
[192] 41% - 50%
51% - 80% [3]

Scenario 1: Maximum number of PV panels on best suited FOR: PV energy balance [kWh/year]

-5.459 - -3.001 [19] -3.000 - -1 [592] 0 - 3,000 [539] 3,001 - 6,000 [237] 6.001 - 9.000 [107] 9,001 - 15,000 [62] 15.001 - 24.546 [28]

Background

#GeoWoche2021

Conclusions

Methodology

- Socio-economic information and residential electricity consumption in relation to building type
- Transferability of the approach needs **local knowledge** on urban structure and household information
- Accuracy of building type classification highly profits from spatial resolution

PV balancing

- Belmopan can cover substantial parts of energy consumption through PV
- Approach allows to define strategies to financially relieve vulnerable population

Thank you for your attention!

References

Warth, G.; Braun, A.; Assmann, O.; Fleckenstein, K.; Hochschild, V. *Prediction of Socio-Economic Indicators for Urban Planning Using VHR Satellite Imagery and Spatial Analysis.* Remote Sensing 2020, 12, 1730. https://doi.org/10.3390/rs12111730

Warth, G.; Braun, A.; Assmann, O.; Fleckenstein, K.; Hochschild, V. *Photovoltaic energy balancing in Belmopan based on building types, UAV aerial imagery and household data.* Geography and Sustainability 2021, under review

Contact

Gebhard Warth, University of Tübingen gebhard.warth@uni-tuebingen.de

