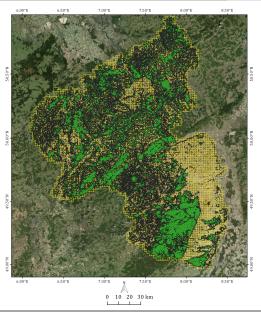
Texture-based classification of forest types using high resolution aerial photographs

Erik Haß, Marion Stellmes and Joachim Hill


University Trier Environmental Remote Sensing and Geoinformatics

hass@uni-trier.de

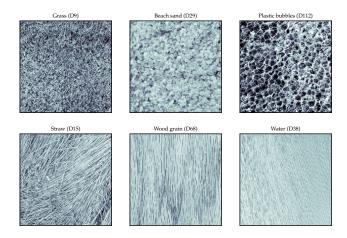
4. gemeinsame Jahrestagung der Arbeitskreise der Deutschen Gesellschaft für Geographie (DGfG) e.V. & Auswertung der Deutschen Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V.

> 24./25. September 2015 Geozentrum der Universität Bonn

Motivation Texture in image processing

Coverage of high resoultion aerial images in RLP (5266 tiles)

Results Texture in image processing 6.00°E 6.50°E 7.00°E 7.50°E 8.00°E 8.50°E 6.00°E 6.50°E 7.00°E 7.50°E 8.00°E 8.50°E 20 30 km 0 10


Introduction Material and methods

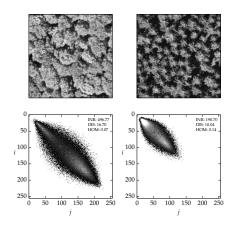
Motivation

Coverage of tiles with at least 50% forest cover (3645 tiles)

Motivation Texture in image processing

Natural textures

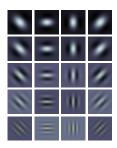
Brodatz library of natural textures [Weber, 1997]


Motivation Texture in image processing

Texture of forest types

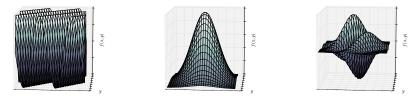
Texture descriptors Workflow

GLCM



Gray level co-occurrence texture features

- spatial domain
- second-order statistics
- GLCM (P(i, j|θ, δ))
- scalar texture descriptors


Texture descriptors Workflow

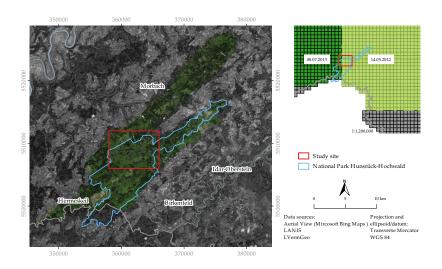
Gabor filter banks

Gabor filter implementations

- frequency domain
- windowed Fourier transform
- filter banks $(\Psi(x, y, f_l, \theta_k))$
- Gabor energy feature

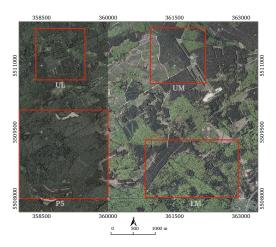
Texture descriptors Workflow

Research questions


main question

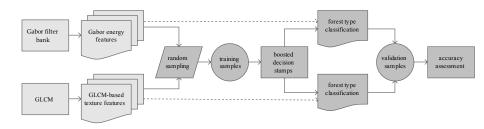
Is a texture-based classification of forest types possible?

secondary question


Which combination of parameters performs best?

Texture descriptors Workflow

Setup



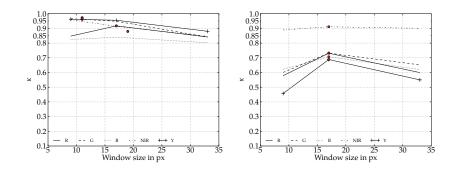
Texture processing

- R G B NIR Y
- window size
- spatial resolution
- orientation

Texture descriptors Workflow

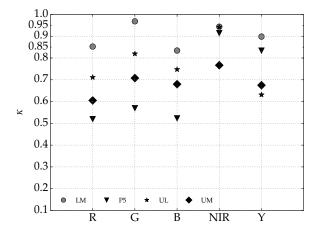
Workflow

Classification Forest type maps

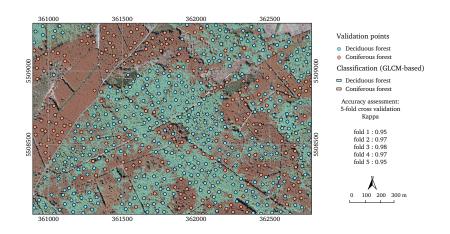

Classification accuracies

A selection of the highest achieved classification accuracies across all conducted texture-based classifications.

Setup	Subset	κ	σ
GLCM _{Y-11}	LM	0.97	0.01
$GLCM_{G-9}$	LM	0.97	0.02
D1 _G	LM	0.97	0.03
D2 _{NIR}	LM	0.95	0.02
D1 _{NIR}	UL	0.94	0.04
GLCM _G	LM_{2m}	0.93	0.02
D1 _{NIR}	P5	0.91	0.03
GLCM _{NIR-17}	P5	0.91	0.07
GLCM _{NIR-9}	UL	0.92	0.05
$GLCM_{Y-17}$	UM	0.86	0.08


Classification Forest type maps

GLCM-based classification (subset LM and P5)

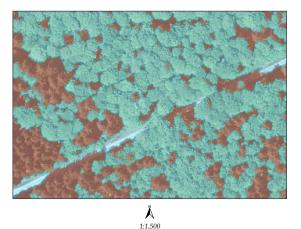

Classification Forest type maps

Gabor energy based classification

Classification Forest type maps

Subset LM

Classification Forest type maps

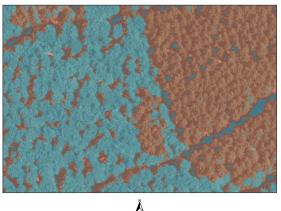

Subset LM

Å 1:1.500

Classification Forest type maps

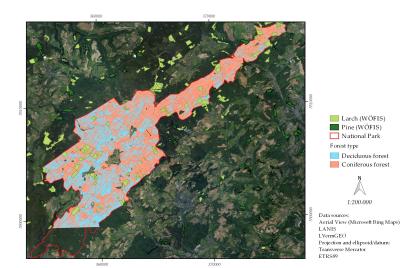
Subset LM

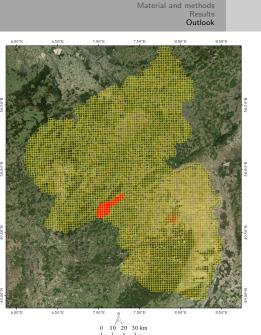
Classification Forest type maps


Subset P5

1:1.500

Classification Forest type maps

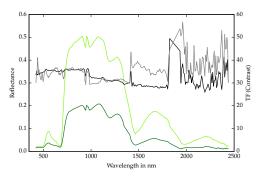

Subset P5



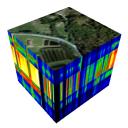
1:1.500

Classification Forest type maps

Hunsrück-Hochwald National Park

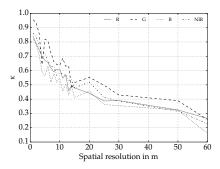


Coverage of generated forest type maps (48 tiles)


Texture-based classification of forest types using high resolution aerial photographs

Focus areas

GLCM in 3D


- texture of hyperspectral images
- volumetric texture features
- VGLCM [Tsai et al., 2007]

Focus areas

Topics

- spectral and textural information
- change in scale
- texture features based on geomertic properties of the GLCM
- image segmentation

References

Tsai, F., Chang, C. K., Rau, J. Y., Lin, T. H. and Liu, G. R. (2007) 3D computation of gray level co-occurrence in hyperspectral image cubes. *Energy Minimization Methods in Computer Vision and Pattern Recognition*, pp. 429-440.

Weber, A. G. (1997)

The USC-SIPI Image Database: Version 5, Original release: October 1997, Signal and Image Processing Institute.

University of Southern California, Department of Electrical Engineering.

Haralick, R. M. (1973)

Textural features for image classification.

IEEE Transactions on Systems, Man and Cybernetics No. 6, 610 – 621.