

POTSDAN

THE TECHNOLOGY

EnMAP Imaging **Spectroscopy Mission: Status and Science** Perspectives

L. Guanter, H. Kaufmann, K. Segl, S. Foerster, <u>S. Chabrillat</u>, C. Rogass, T. Storch, A. Mueller, U. Heiden, M. Bachmann, G. Rossner, C. Chlebek, S. Fischer, B. Sang,

the EnMAP Science Advisory Group,

and many others...

Quo Vadis imaging spectroscopy

- ❖ Reflectance spectroscopy → Reflectance spectroscopy is the study of light as a function of wavelength that has been reflected or scattered from a solid, liquid, or gas
- Absorption bands due to electronic, vibrational or rotational energy transitions in atoms and molecules that characterize material

Water molecule: 3 fundamental modes of vibration

✤ Imaging spectroscopy → Study of solar electromagnetic radiation reflected by Earth materials in the spatial domain

GFZ

elmholtz Centre

Airborne or spaceborne Imaging Spectroscopy (IS)

Also named: Hyperspectral Remote Sensing (HRS)

POTSDAM

Comparison multispectral - hyperspectral

HELMHOLTZ

GFZ

Helmholtz Centre

POTSDAM

From absorption bands to material identification & quantification

Absorption bands \rightarrow spectral features in the spectrum of reflected radiation

Vegetation: Mapping leaf pigments

Absorption features in the reflectance spectrum due to leaf pigments can be exploited to map vegetation condition and for early stress detection

HELMHOLTZ

ASSOCIATION

GFZ

POTSDAM

Remote Sensing Section

Soil Mapping and Monitoring

Absorption features in the reflectance spectrum due to mineral and water constituents can be exploited to map soil conditions and detect soil erosion/ degradation

data @3m

ELMHOLTZ

ASSOCIATION

Water quality: distribution of Cyanobacteria

Monitoring hydrocarbons

Kuester et al

Almeria plastic foil greenhouses

Plastic in urban areas

3. HyMap RGB colour composite image in near-natural colours based on VIS bands 16/R, 10/G, and 3/B; the image is of the BGR premises with (1) and (2) oil-contaminated reference areas, (3) plastic sheets, (4) artificial grass and race track, (5) plastic roofs; insert above left: zoomed section.

Toward EnMAP: Status of Spaceborne Imaging Spectroscopy

The long and sad history of spaceborne imaging spectroscopy:

- Current missions → So-called "technology demonstrators"
 - Low data quality and limited acquisition capability
 - Examples: Hyperion (USA NASA, 2000) & CHRIS/PROBA (UK/ESA, 2001), designed for a 1-year lifetime!
- There are more imaging spectrometers looking at the Moon and Mars than at the Earth!
- Most of imaging spectroscopy applications rely on airborne spectrometers → heritage from AVIRIS (NASA-JPL, since 1987)

→ EnMAP expected to fill the gap in operational spaceborne imaging spectroscopy

Spaceborne missions under development:

- EnMAP (Germany, launch 2018)
- HISUI (Japan, launch 2018?)
- PRISMA (Italy, launch ???)
- HyspIRI (NASA, launch >2023?) and more..

- EnMAP: Environmental Mapping and \succ Analysis Program
- Conceived as an operational imaging \succ spectroscopy mission for EO
- Good data quality & higher level products \geq from ground segment
- Open data policy

L 2023

Decommissioning Phase

 \geq

 \succ

EnMAP – Main Mission Parameters

- Push-broom imaging spectrometer
- Spectral range
 - 420 nm to 1000 nm (VNIR)
 - 900 nm to 2450 nm (SWIR)
- Mean spectral sampling distance
 - VNIR ~6.5 nm
 - SWIR ~10 nm
- Signal-to-noise ratio (at Lref)
 - > 500 @ 495 nm
 - > 180 @ 2200 nm
- Swath width 30 km; length up to 1020 km
- Ground Sampling Distance 30 m
- Repeat rate
 - 27 days nadir
 - 4 days at ± 30° off-nadir pointing
- ♦ Mission lifetime \geq 5 years

Dual-spectrometer instrument concept

POTSDAM

Independent VNIR & SWIR FPAs: field splitter & double entrance slit *

ASSOCIATION

Pre-processing: from raw data to surface reflectance spectra

- Data pre-processing in Remote Sensing: series of operations with the image in order to convert the raw data acquired by the sensor into high quality reflectance data in a given map projection.
- Name convention for remote sensing data products:
 - Level 0 data digital number data
 - → Radiometric correction
 - Level 1B data radiometrically calibrated radiance data
 - \rightarrow Geometric correction
 - Level 1C data radiometrically calibrated radiance data in a map projection
 - \rightarrow Atmospheric correction
 - Level 2 data Surface reflectance data in a map projection

"Raw data" (digital numbers) \rightarrow Calibrated Radiance \rightarrow Geographical projection \rightarrow Surface reflectance

lelmholtz Centre

POTSDAM

User oroducts	Product	Definition
	Level 0	Time-tagged instrument raw data with auxiliary information (internal)
	Level 1B	Radiometrically-corrected, spectrally- and geometrically-characterised radiance
	Level 1C	Orthorectified level 1B
	Level 2A	Atmospherically-corrected level 1C

Acquisitior	۱S:
-------------	-----

- Restricted to 1000 km/orbit, and 5000 km/day
- Daily acquisition plan (mostly) based on user requests and categories

Priority	Request
1	Internal user
2	Support for catastrophic events
3	Registered users (Cat.1) excellent proposals
4	Registered users (Cat.1)
5	Non-registered users (Cat.2)
6	Requests beyond fulfilled contingents
7	Background mission

Imaging Spectroscopy & Science

→Quantitative mapping for a wide range of research fields

→Great potential for new (and unexpected!) applications

EnMAP Science Plan

Content

- Research context and significance
- General mission framework
- EnMAP perspectives and impact
- Scientific exploitation strategy
- Defined by EnSAG

www.enmap.org

Science Plan

of the Environmental Mapping and Analysis Program (EnMAP)

October, 2012

EnMAP Science Advisory Group (EnSAG) DLR Bonn GFZ Potsdam

Karl

Segl

Förster

Christian

Rogass

Chabrillat

Küster

André Hollstein Christian Chlebek Godela Roßner Stefanie Schrader Sebastian Fischer Christoph Straif

Scientific leadership + Soils and Geology

LMU München

Luis

Guanter

Tobias

Hank

Hermann

Kaufmann

Wolfram Mauser Agriculture

Matthias Locherer

HU Berlin

Patrick Hostert

Rabe

Sebastian v. d. Linden

Natural Ecosystems and Ecosystem Transitions

Uni Trier

Henning Buddenbaum

HZG Geesthacht

Hajo Krasemann

Roland Doerffer

Yan Xi

Coastal and inland waters

DLR Oberpfaffenhofen

Andreas Müller

Uta Heiden

Ground segment + Urban Uni Lethbridge ESA

Tobias

Storch

Mike Rast

Karl Staenz

Scientific advisory

EnMAP end-to-end scene simulations

Objectives:

Segl et al.,

2012

GFZ

POTSDAM

IEEE JSTARS,

1) Optimization of instrument design

Simulatior

orward

- Refinement of instrument specifications
- Impact of instrumental effects on Digital Numbers
- 2) Generating a data base for algorithm development, validation and calibration
 - Reflectance and radiance for scientific applications

Sensor Data (DN)

EnMAP Scene Simulator

Radiometric Module

Spectral Module

Spatial Module

Atmospheric Module

Input Data (Reflectance)

- Digital Numbers for Ground Segment

Orthorectification

Output Data (Reflectance)

EnMAP end-to-end scene simulations

Simulation of (i) EnMAP-like TOA radiance images and (ii) L2 surface reflectance after pre-processing

Many (>100) simulated EnMAP data sets already available

Contact Karl Segl at GFZ if you need simulations for your study site!

GFZ Helmholtz Centre POTSDAM

- Software for the preprocessing and scientific exploitation of EnMAP data
- Free, open source and platform independent
- Reference algorithms for different application fields being developed by EnSAG partners

EnMAP-Box v1.2 File Tools Applications Help Image Panel File List () Image Spectral 4 #1: 26-73-15 (Hymap_Berlin-A_Image) 🗁 🐴 Hymap Berlin-A Image - - -🔍 #2: (Hymap_Berlin-A_Classification-Ground... 👝 💷 - i File Information 0.92 100122 0.92 > 11 Bands (micrometers) < Hymap_Berlin-A_Classification-Grou i File Information Class Information 0 "Unclassified" "vegetation" "built-up" "impervious" "pervious" "water' D Band imageRF: RFC Parameterization Input Image Hymap_Berlin-A_Image Reference Areas Hymap_Berlin-A_Classification-Training-Sample Deremeters 4386.0 x:139 y:103 geo-x:391234.00 geo-y:5820461.0 Class:1 Number of Trees 100 1: x:139 v:103 - B X Advanced Parameters 12 40 Number of Features square root of all features log of all features by user Impurity Function Gini Coefficient C Entropy Stop Criteria Min impurity = 0.0000 Min number of samples in node 1 Output RFC Model D:\MvProject\model.rfc -Accept Cancel

Download from www.enmap.org/?q=enmapbox

Rabe, van der Linden et al. (HU Berlin)

EnGeoMAP: Geological Mapping

- Expert system for geological mapping of resource deposits and monitoring of mine waste
- Full mineral identification and semi-quantification

Gold mining sites Rodalquilar Caldera; Spain; HyMAP, Hyperion; Geology after Arribas (1989)

Hyperspectral image

Rogass et al.

L3-Product: abundant minerals (red-carbonates, blue – epidotes, green-clays

ASSOCIATION

EnSoMAP: Digital Soil Mapping

- Expert system for soil mapping
- Automatic generation of semi-quantitative soil maps (soil moisture content, organic carbon, iron oxides, clays, carbonates content) + quality layer map
- User custom option for fully quantitative soil mapping
- Currently distributed for airborne users:

www.gfz-potsdam.de/hysoma

Example L3 soil products

ASSOCIATION

Chabrillat et al.

Soil mapping: Potential from spaceborne platforms

Upcoming high-quality imaging spectroscopy data expected from next generation orbiting sensors to be launched soon, e.g. EnMap (2018), HISUI (2018), Shalom (2020), HyPXIM (>2023), HypSRI (>2023)

♦ From local \rightarrow regional \rightarrow global scale

- Support to soil and agriculture related EU policies and different stakeholders
- Global soil <u>mapping</u> and <u>monitoring</u>
- Demonstration of potential of hyperspectral imagery for soil mapping applications from airborne to satellite scale over bare fields
 - Simulation of satellite images based on existing datasets
 - Algorithm development
 - Feasibility and expected accuracy for delivery of soil products

Case study: Soil properties mapping in bare crops

Semi-arid Mediterranean Spain

- Parameters of interest: Mineralogy (Clay, iron oxide, CaCO₃ content)
- In-situ validation dataset: 50 samples
- Airborne HyMap imagery: 126 sp. bands ~400-2450nm, SSD 12-17 nm. GSD 4.5m

Luxembourg

- Parameter of interest: Soil organic carbon (SOC) content
- In-situ validation dataset: 81 samples
- Airborne AHS-160 imagery: 20 sp. bands ~442-1019nm, SSD 27-30 nm. GSD 2.6m
- Collaboration UCL, Louvain, Belgium

EnMAP end-to-end scenes simulation of (i) EnMAP-like TOA radiance images and (ii) L2 surface reflectance after pre-processing (Segl et al., 2012): 244 sp. bands ~450-2450 nm, SSD 6.5-10nm. GSD 30m

Retrieval of soil mineralogical content (AutoPLSR): Soil maps and prediction model performances vs. Ground-truth data

Ground-truth

ELMHOLTZ

ASSOCIATION

Helmholtz Centre POTSDAM Retrieval of soil OC content (AutoPLSR): Soil maps and prediction model performances vs. Ground-truth data

Steinberg et al., 2015, Rem. Sens.

ASSOCIATION

EnMAP-flight campaigns

Home

http://www.enmap.org/?g=flightbeta

EnMAP Box

Applications

Airborne hyperspectral images and associated in-situ data

provided free of charge to science community under CC BY-SA Licence

Search **metadata portal** at www.enmap.org \rightarrow data

Datasets published as **data** publications (with DOI)

Technical Report will be provided with each dataset (documentation of data acquisition, processing, quality etc.)

Several hyperspectral airborne flight surveys have been carried out in the frame of the EnMAP preparatory program to support method and application development in the prelaunch phase. The metadata base below provides details about the campaigns, information about recorded airborne hyperspectral data sets and other data associated to the respective campaigns like field and laboratory measurements. Further, it informs about the availability of simulated EnMAP and Sentinel-2 data. Contact details of the data owners are given for interested researchers regarding data exchange. The data listed in this metadata base is freely available for scientific purposes.

Science

All data on this website are provided free of charge and under a Creative Commons Licence CC BY-SA 3.0 Unported Licence and is subject to the following terms and conditions:

Mission

Data

Support to young researchers

- **PhD Programme:** 15 PhD projects currently ongoing on different research areas and groups in Germany
- YoungEnMAP: International Summer Schools organised every year

Thank you for your attention!

Federal Ministry of Economics and Technology

DLR

www.enmap.org

GFZ Helmholtz Centre POTSDAM