

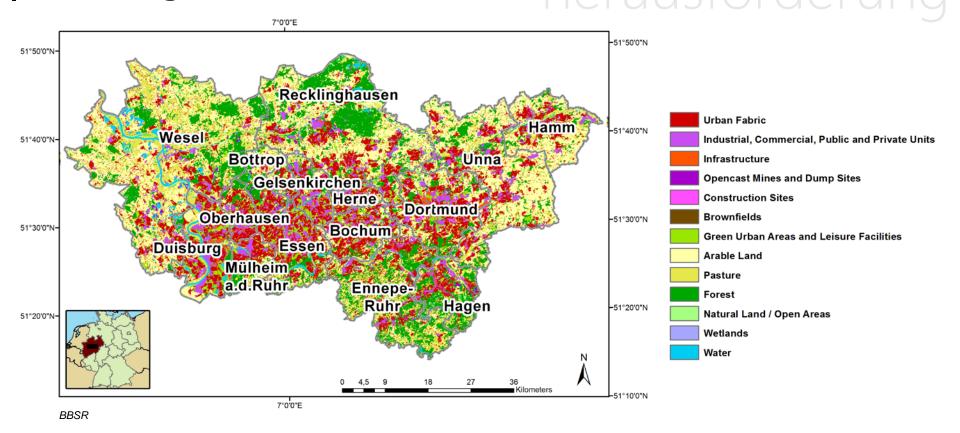
Modellierung von urbanem Wachstum in schrumpfenden Regionen – eine komparative Studie

Andreas Rienow¹, Dirk Stenger¹& Gunter Menz¹ Roland Goetzke², Jana Hoymann²

- 1 AG Fernerkundung / GIS, Geographisches Institut der Universität Bonn
- 2 Bundesinstitut für Bau-, Stadt- und Raumforschung im Bundesamt für Bauwesen und Raumordnung (BBSR)

inhalt

- | Herausforderung Flächenverbrauch in schrumpfenden Regionen
- | Modellkomplex I SLEUTH & ReHoSh
- | Modellkomplex II Land Use Scanner & PANTA RHEI REGIO
- | Ergebnisse Urbane Muster 2025
- **Ausblick** Grenzen und Potenziale



Flächenverbrauch in schrumpfenden Regionen

|Das Ruhrgebiet

Flächenverbrauch in schrumpfenden Regionen

|Urban Decline trifft ...

- Bevölkerungsrückgang von 5,4 Mio. auf 5.1 Mio. (1996-2010)
- 7,5 Geburten/1,000 EW (8,3 in BRD)
- Arbeitslosenquote von ca. 10% (6.8% in BRD)

Duisburg-Hochfeld (WAZ)

Flächenverbrauch in schrumpfenden Regionen

... Urban Sprawl!

- Bevölkerungsrückgang von 5,4 Mio. auf 5.1 Mio. (1996-2010)
- 7,5 Geburten/1,000 EW (8,3 in BRD)
- Arbeitslosenquote von ca. 10% (6.8% in BRD)
- ~ 35.000 ha neue versiegelte Flächen(NRW Pro, 1/3 der gesamten städt. Fläche)
- Leichter Rückgang, 30 ha Vorgabe (BMU) wird so nicht erreicht

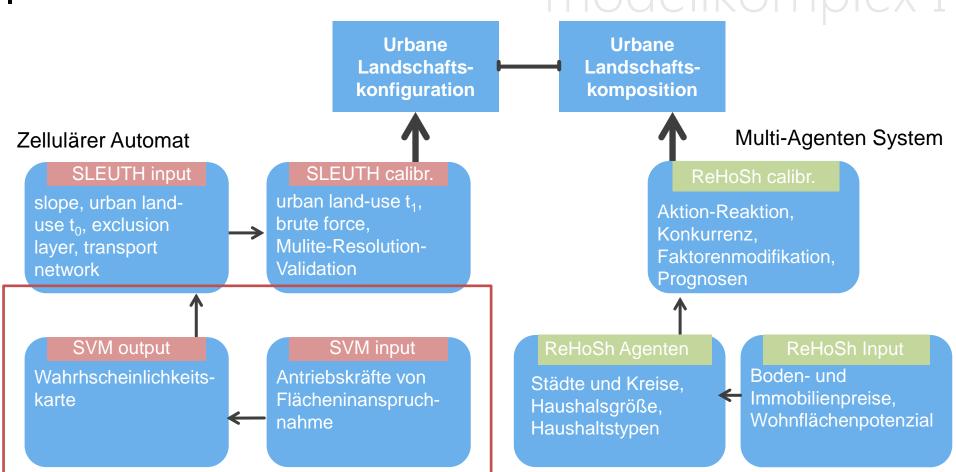
DLISTATIS Statistisches Bundesamt

|Ziel: Prognose 2025

- Modellierung der Flächenversiegelung und der Bevölkerungsentwicklung auf Basis des Zellulären Automaten SLEUTH und des Multi-Agenten Systemes ReHoSh
- Modellierung des Landnutzungswandels und seiner Antriebskräfte mittels des Land Use Scanners und PANTA RHEI REGIO

Basis:

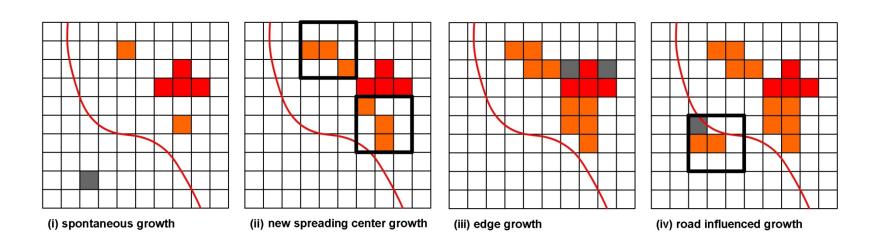
Fernerkundungsbasierte Landbedeckungsdaten der Projekte "NRW Pro" und "CC-LandStraD"



Zellen und Agenten

| SLEUTH & ReHoSh

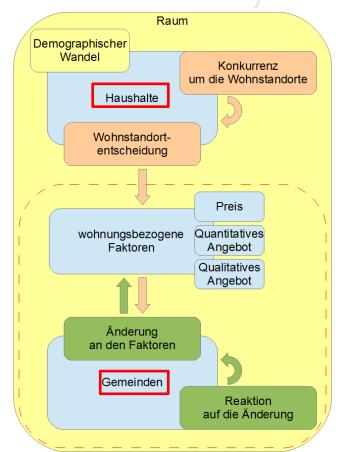
Arbeitskreis Fernerkundung Tübingen, 26. September 2013



|SLEUTH Urban Growth Model

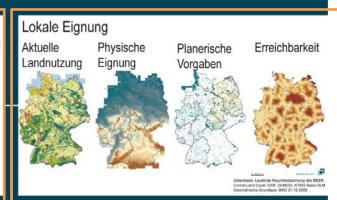
- zellen
- Zellulärer Automat zur Modellierung von städt. Wachstum (Clarke et al. 1997)
- Vier Eingangsvariablen und fünf Wachstumskoeffizienten (brute-force Kalibrierung mittels Multi-Resolution Validation nach Goetzke 2011)

Rienow & Goetzke (accepted)



| ReHoSh Multi-Agent System

- ReHoSh: Residential Mobility and the Housing Market of Shrinking City Systems
- Multi-Agenten System (Dirk Stenger, Universität Bonn)
- Dynamik von interregionalen Immobilienmärkten unter Einbezug von potenziellen Siedlungsflächenreserven (ruhrFIS)
- Simulation von Haushaltsentwicklung, Wohnbedarf und Immobilienpreisen in schrumpfenden Regionen
- Implementiert in Repast (OOP)

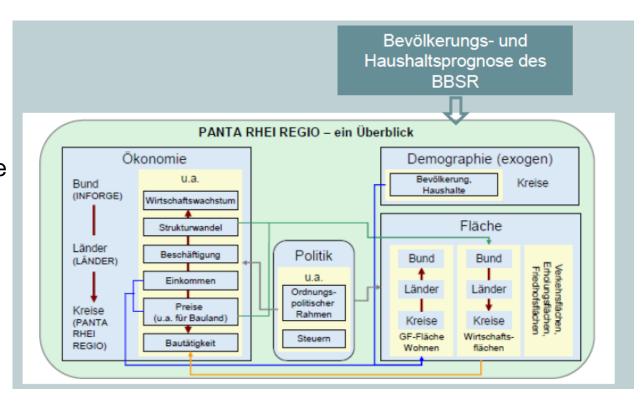


Pixel & Prognosen

| Land Use Scanner & **PANTA RHEI REGIO**

Regionale Raumansprüche aus der Modellierung Extern mit PANTA RHEI **REGIO** kalkuliert Allokationsmodul: Zukünftige Landnutzung

Land Use Scanner



|PANTA RHEI REGIO

- Umweltökonomisches Modell zur Beratung politischer Entscheidungsträger
- Projektion der Flächeninanspruchnahme vor dem Hintergrund eines sich fortsetzenden regionalen, sektoralen und demographischen Wandels

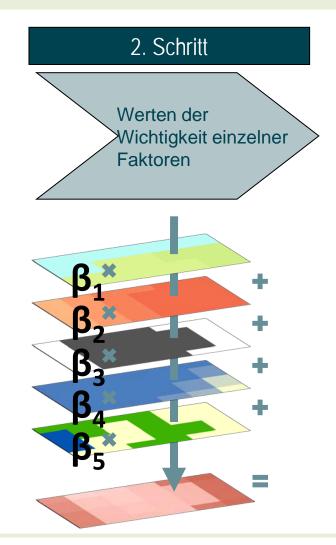
| Land Use Scanner

- Räumlich-explizites Modell zur Verortung von LUCC (entwickelt vom Planbureau voor de Leefomgeving, NL)
- Regionaler Bedarf einer LUC-Klasse wird auf Basis von lokalen Eignungskarten verortet

1. Schritt

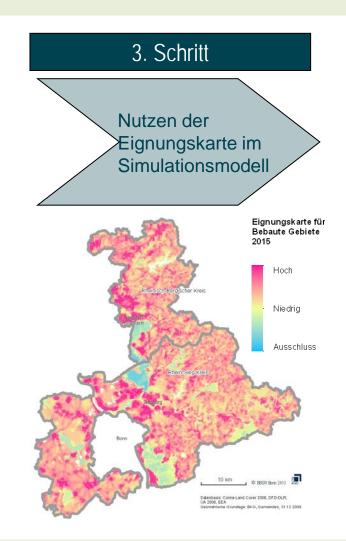
Zusammenstellen von räumlichen Einflussfaktoren

- DLM-DE, Urban Atlas
- SRTM-Daten
- Ertragspotenziale (MSQR)
- Alle Schutzgebietskategorien
- Alle flächenhaften regionalplanerischen Festlegungen (ROPLAMO)
- Erreichbarkeiten von
 - Autobahnauffahrten
 - Fernbahnhöfen
 - Flughäfen
 - Große Städte
- Urbane Attraktivität
- Weitere Eigenschaften: Freileitungen, WKA



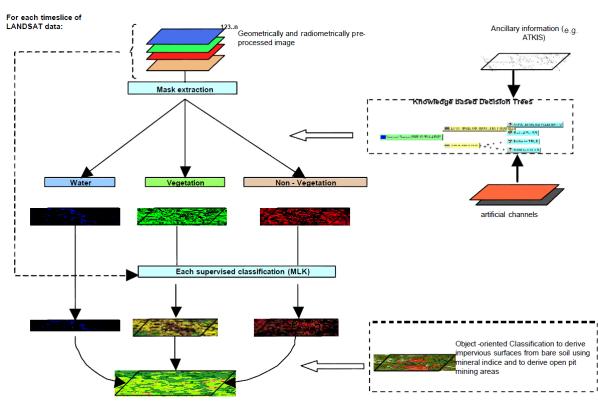
| Land Use Scanner

- Räumlich-explizites Modell zur Verortung von LUCC (entwickelt vom Planbureau voor de Leefomgeving, NL)
- Regionaler Bedarf einer LUC-Klasse wird auf Basis von lokalen Eignungskarten verortet



| Land Use Scanner

- Räumlich-explizites Modell zur Verortung von LUCC (entwickelt vom Planbureau voor de Leefomgeving, NL)
- Regionaler Bedarf einer LUC-Klasse wird auf Basis von lokalen Eignungskarten verortet



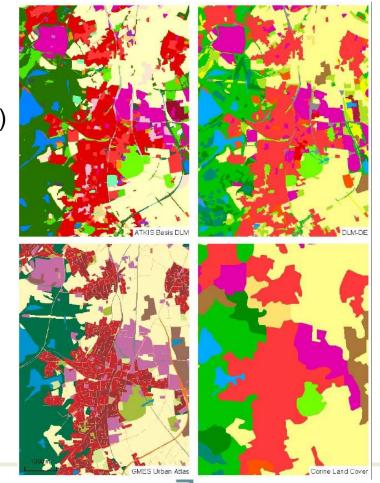
Modellierung 2025 - Input

|Basis: Fernerkundungsdaten

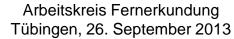
Modellkomplex I:

- Landsat-MSS, -TM, -ETM+
- Mask extraction, Decision trees, MLC, Segmentierung

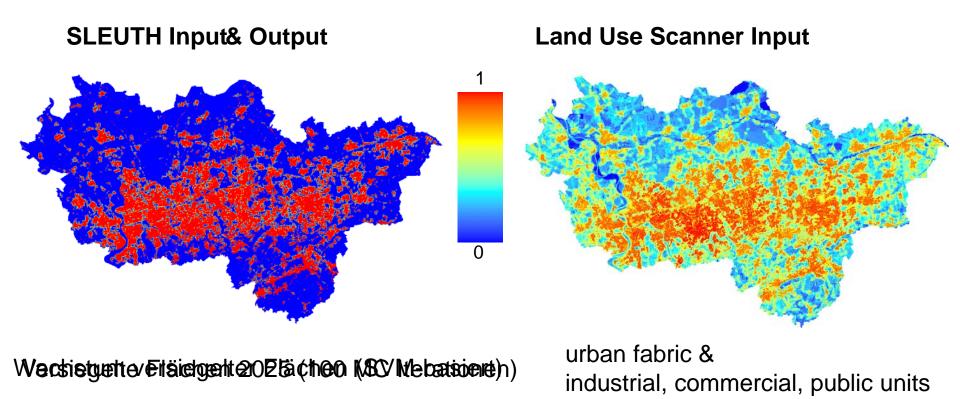
Schoettker, Over, Braun. Menz & Siegmund (2003)



|Basis: Fernerkundungsdaten


Modellkomplex II:

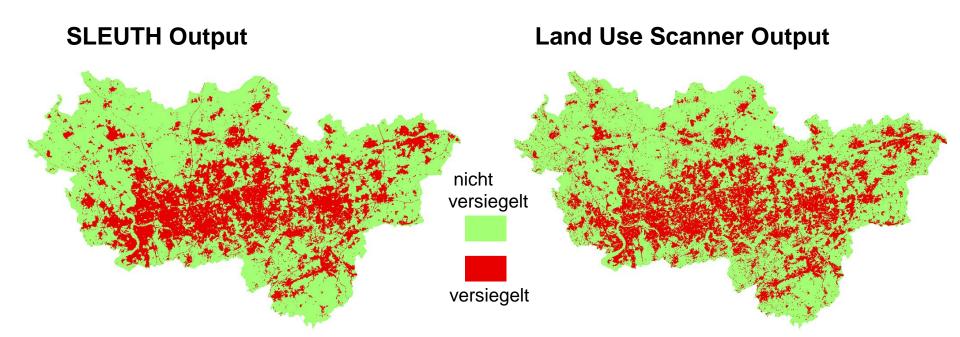
- DLM-DE (ATKIS® Basis DLM und CLC-Nomenklatura, RapidEye und DMC-Daten)
- GMES Urban Atlas



Modellierung 2025 - Wahrscheinlichkeiten

| Wahrscheinlichkeiten von Flächenverbrauch

ergebnisse



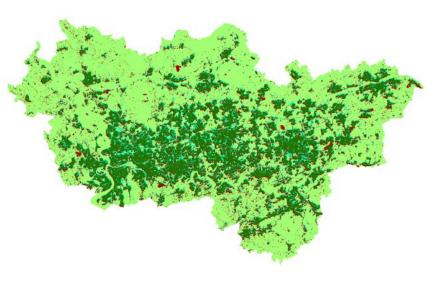
Modellierung 2025 – LUC-Konfiguration

| Stadtfläche 2025

ergebnisse

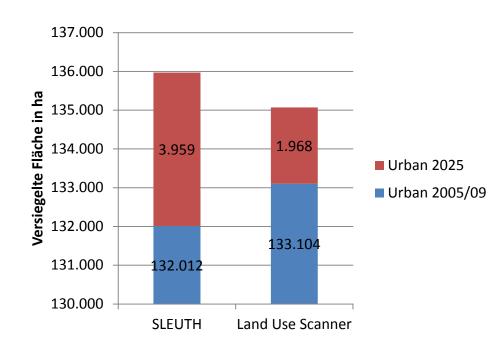
Konfiguration versiegelter Flächen 2025

Konfiguration authorized Konfiguration (1998) Konfi



Modellierung 2025 - Vergleich

| Stadtfläche 2025

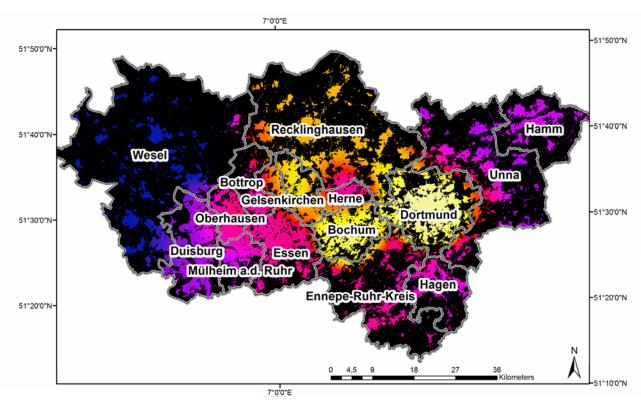


versiegelt SLEUTH & Land Use Scanner

unversiegelt SLEUTH & unversiegelt Land Use Scanner

versiegelt SLEUTH, unversiegelt Land Use Scanner

unversiegelt SLEUTH, versiegelt Land Use Scanner



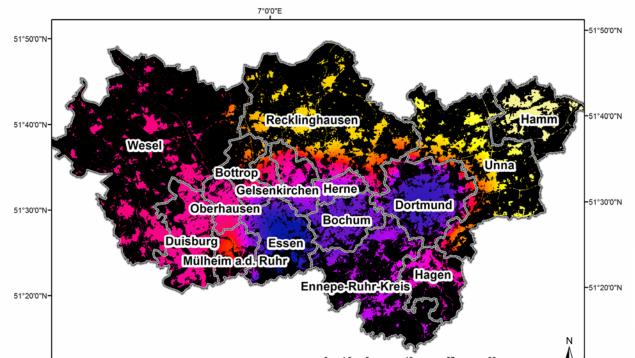
Kopplung von Zellen und Agenten

| Junge vs. alte Haushalte

ergebnisse

Differenz der Anteile von jungen 1-2 Personen Haushalten im Vergleich zu alten

Rienow & Stenger (accepted)



Kopplung von Zellen und Agenten

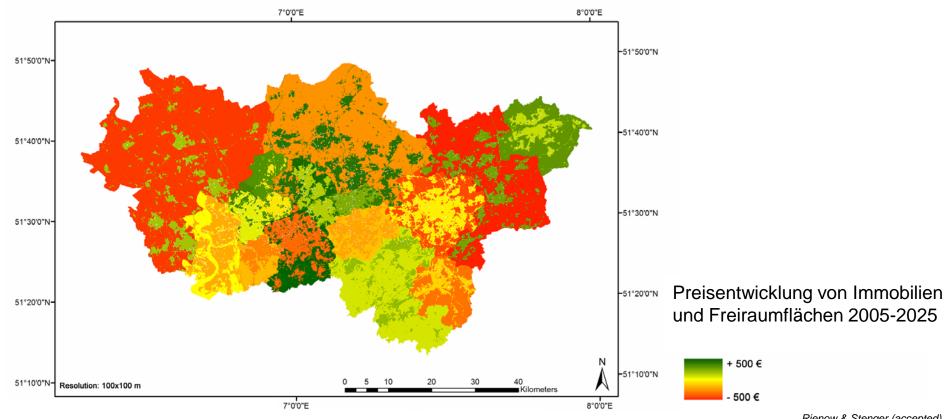
| Kleine vs. große Haushalte

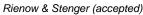
7°0'0"E

ergebnisse

Differenz der Anteile von kleinen (1-2 Pers.) Haushalten im Vergleich zu großen (>3 pers.)

Rienow & Stenger (accepted)





Kopplung von Zellen und Agenten

| Preisentwicklung 2005-2025

Grenzen und Potenziale

| Modellkomplex I

Vorteile

- Einfache Handhabung, wenig Dateninput, geringer Kalibrationsaufwand
- Erweiterungsmöglichkeiten (bspw. mit SVM)
- Lose Kopplung mit ReHoSh visualisiert zukünftige Trends von urban decline und urban sprawl

Nachteile

- Keine dynamische Kopplung mit ReHoSh
- Unterscheidung von lediglich zwei LUC-Klassen

Grenzen und Potenziale

| Modellkomplex II

Vorteile

- Volle GIS-Funktionalität (Datenmanagement, Visualisierung, Modellierung, etc.)
- Multiskaligkeit (z.B. Nachfrage auf unterschiedlichen administrativen Ebenen, Allokation auf Rasterebene)
- Ökonomische Orientierung (z.B. bei Vorhandensein von Grundstückswerten kann Modell daraufhin kalibriert werden)

Nachteile

- Keine dynamische Kopplung mit Nachfrage-/Bevölkerungs-Modell
- Hoher Konfigurationsbedarf

Grenzen und Potenziale

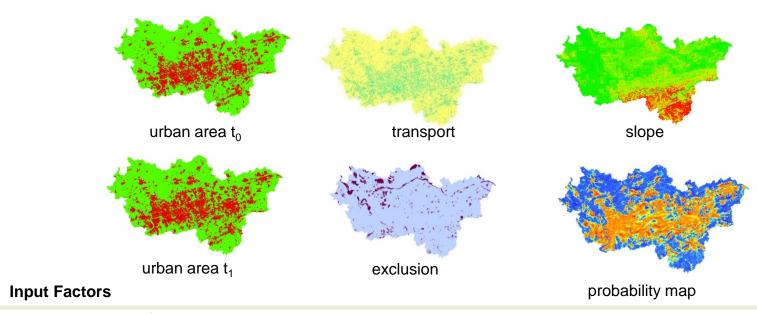
ausblick

Integration!

ende

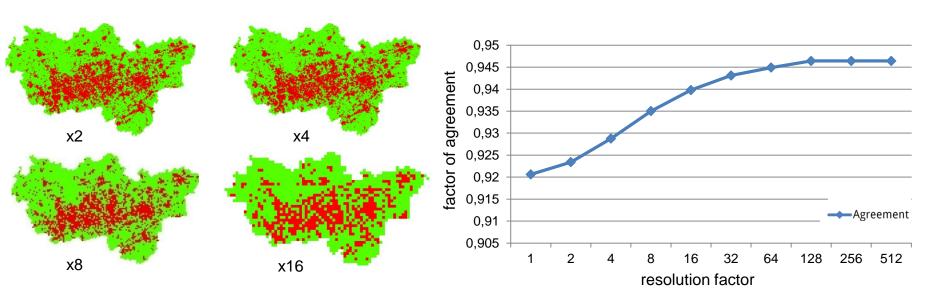
Vielen Dank für Ihre Aufmerksamkeit!

- the challenge
- ~ 35,000 ha of new (sealed) urban areas (NRW Pro), 1/3 of the total area
- Slight decrease, but 30 ha directive for 2020 won't either be reached 2030
- Demographic trend towards smaller households
- Fiscal competition between communities
- Planning routines (greenfield instead of brown field development)
- Preference for low density housing



|SLEUTH Urban Growth Model

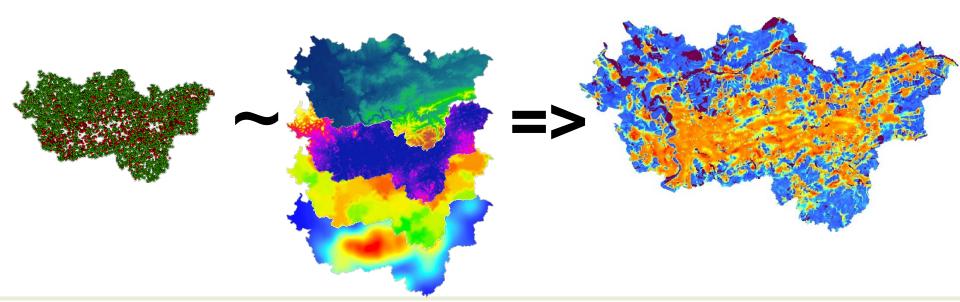
- zellen
- Zellulärer Automat zur Modellierung von städt. Wachstum (Clarke et al. 1997)
- Vier Eingangsvariablen und fünf Wachstumskoeffizienten (brute-force Kalibrierung mittels Multi—Resolution Validation nach Goetzke 2011)



Modeling Spatial Patterns with SLEUTH

| SLEUTH Multi Resolution Validation

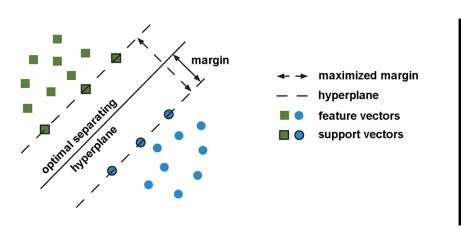
- the cells
- Cellular automaton for spatially explicit predicting land-use change (Clarke 1997)
- SLEUTH urban growth model (modified by Goetzke 2011): urban change modeling by using four input variables and five growth coefficients (MRV, brute force)

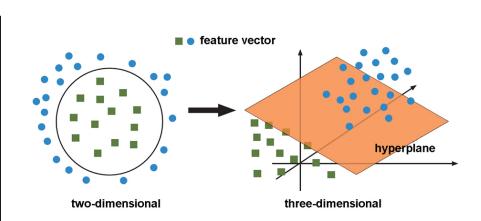


- -

|Supporting SLEUTH by Using SVM

- Set of training data: topographic data; cost weighted distance variables (river, city 20,000, highway, airport...); density variables (population, unemployed, income, cars...)
- Producing a SVM-based probability map of urban growth with EnMap[©] Toolbox





|Supporting SLEUTH by Using SVM

- the cells
- Part of a new generation of machine learning algorithms finding their way into land system science (well known from many RS applications)
- (non-linear) (binary) classifier that labels a sample of empirical data through constructing an optimal separating hyperplane

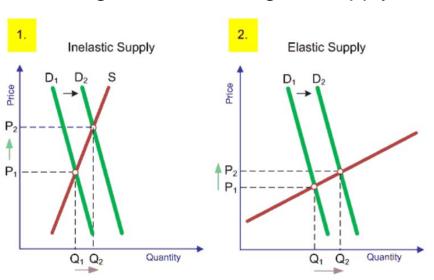
Decision for an optimal separating hyperplane and non-linear transformation

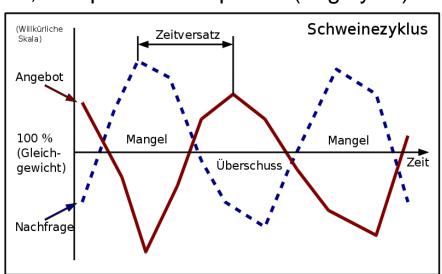
Vogel 2012

| ReHoSh Assumptions

the agents

- 1. Limitation to housing related factors
- 2. All households have unlimited knowledge of all possible dwelling places
- 3. Prices for housing rise and fall linearly
- 4. Inelastic price behavior
- 5. Demographic change is simulated with a constant decrease in the whole region





| ReHoSh Price Development

- Housing prices change faster than the supply of dwellings (inelastic supply)
- Time lag between change of supply, demand, and price development (hog cylce)

Price Elasticity of Supply =
Quantity Change Percentage

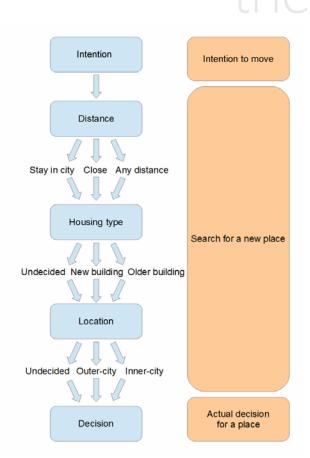
Price Change Percentage

http://thismatter.com/economics/supply-elasticity.htm

Modeling Residential Mobility with ReHoSh

| ReHoSh Migration Process

Intention to move


Transition probability per year

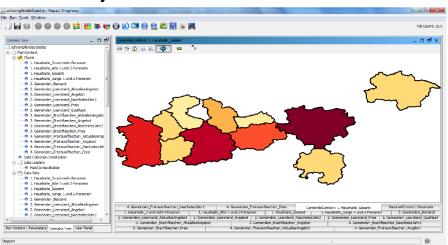
Search for a new dwelling place

Distance, housing type, location

Actual decision for a place

Price, supply, quality (age, vacancy rate)

Rienow & Stenger (submitted)



| ReHoSh Modelling Environment Repast

- Java-based open source toolkit for MAS
- OOP: characterized by encapsulation and polymorphism
- The model is implemented as a hierarchy of separate classes (5) and contexts, each with its own collections of objects and schedule of their actions

ReHoSh in Repast

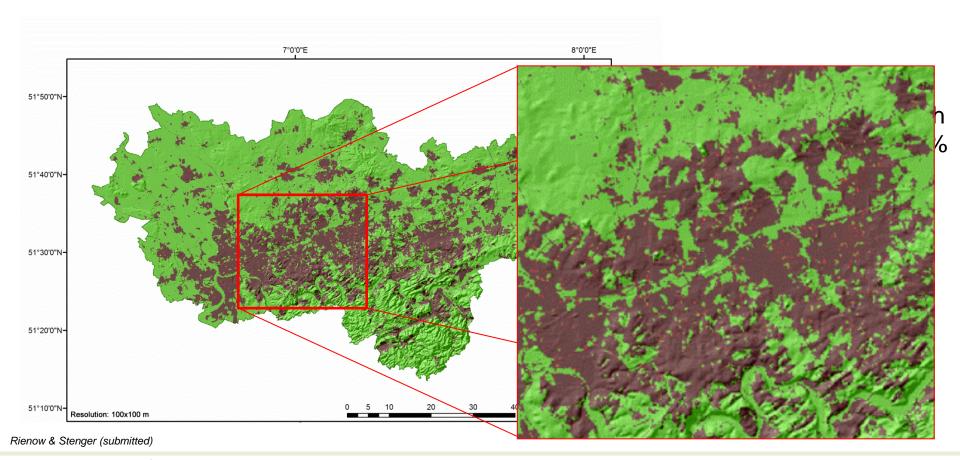
Stenger (2012)

Modeling Residential Mobility with ReHoSh

| ReHoSh Initialisation 2010

City/ District	Number of households (*100)			Number of	Prices (€)		Potential dwelling
	1-2 pers, < 45 yrs.	1-2 pers, > 45 yrs.	> 3 pers.	dwellings	ground value	real estate	area (ha)
Duisburg	483	1,158	574	259,457	1,880	1,155	158
Essen	740	1,541	613	318,927	2,460	1,244	97
Mülheim a. R.	188	419	222	92,447	1,950	1,232	42
Oberhausen	229	494	255	106,812	1,981	1,106	66
Wesel	339	1,019	496	206,152	1,871	1,190	331
Bottrop	105	267	138	56,120	2,050	1,215	69
Gelsenkirchen	272	663	313	142,506	1,900	879	86
Recklinghausen	562	1,416	758	304,212	1,960	1,191	369
Bochum	506	893	385	192,754	2,030	1,245	98
Dortmund	840	1,420	586	310,814	1,995	1,183	388
Hagen	225	463	237	105,524	1,900	1,093	62
Hamm	149	389	258	85,077	1,876	986	157
Herne	156	422	176	85,373	1,900	1,082	36
Ennepe-Ruhr	330	822	377	170,102	2,321	1,150	211
Unna	291	910	523	191,807	1,999	1,137	375

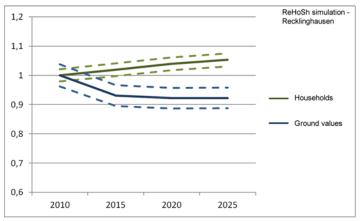
RuhrFIS (2012) Boris (2012) destatis

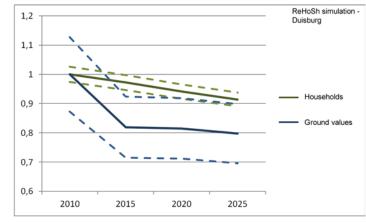


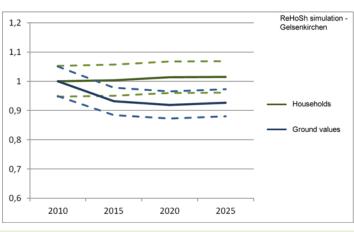
Combining Cells and Agents

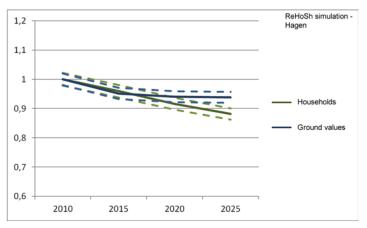
| Urban Growth of the Ruhr 2025

the results

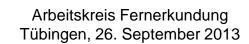







Combining Cells and Agents

| Urban Decline of the Ruhr 2025



Rienow & Stenger (submitted)

